Renesns

HD74LVC4245A

Octal Bus Transceiver and 3.3 V to 5 V shifters with 3-state Outputs

REJ03D0378-0100
(Previous ADE-205-683 (Z))
Rev. 1.00
Aug. 20, 2004

Description

The HD74LVC4245A has eight bus transceivers with three state outputs in a 24 pin package. When (DIR) is high, data flows from the A inputs to the B outputs, and when (DIR) is low, data flows from the B inputs to the A outputs. A and B bus are separated by making enable input ($\overline{\mathrm{OE})}$ high level. And this product has two terminals $\left(\mathrm{V}_{\mathrm{CCA}}, \mathrm{V}_{\mathrm{CCB}}\right), \mathrm{V}_{\mathrm{CCA}}$ $(5 \mathrm{~V})$ is connected with control input and A bus side, $\mathrm{V}_{\mathrm{CCB}}(3.3 \mathrm{~V})$ connected with B bus side. $\mathrm{V}_{\mathrm{CCA}}$ and $\mathrm{V}_{\mathrm{CCB}}$ are isolated. This allows for translation from a 3.3 V to a 5 V environment, and vice versa. Low voltage and high-speed operation is suitable at the battery drive product (note type personal computer) and low power consumption extends the life of a battery for long time operation.

Features

- This product function as level shift transceiver that change $\mathrm{V}_{\mathrm{CCA}}$ input level to $\mathrm{V}_{\mathrm{CCB}}$ output level, $\mathrm{V}_{\mathrm{CCB}}$ input level to $\mathrm{V}_{\mathrm{CCA}}$ output level by providing different supply voltage to $\mathrm{V}_{\mathrm{CCA}}$ and $\mathrm{V}_{\mathrm{CCB}}$.
- This product is able to the power management: Turn on and off the supply on $\mathrm{V}_{\mathrm{CCB}}$ side with providing the supply of $\mathrm{V}_{\mathrm{CCA}}$. (Enable input $(\overline{\mathrm{OE}})$: High level)
- $\mathrm{V}_{\mathrm{CCA}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=2.7 \mathrm{~V}$ to 3.6 V
- All control input $\mathrm{V}_{\mathrm{I}}(\max)=5.5 \mathrm{~V}\left(@ \mathrm{~V}_{\mathrm{CCA}}=0 \mathrm{~V}\right.$ to 5.5 V$)$
- All A bus side input outputs $\mathrm{V}_{\mathrm{I} / O}(\max)=5.5 \mathrm{~V}$ $\left(@ V_{\text {CCA }}=0 \mathrm{~V}\right.$ or output off state $)$
- All B bus side input outputs $\mathrm{V}_{\mathrm{I} / \mathrm{O}}(\max)=3.6 \mathrm{~V}$ ($\mathrm{V}_{\mathrm{CCB}}=0 \mathrm{~V}$ or output off state)
- High output current

A bus side : $\pm 24 \mathrm{~mA}$ ($@ \mathrm{~V}_{\mathrm{CCA}}=4.5 \mathrm{~V}$ to 5.5 V)
B bus side : $\pm 12 \mathrm{~mA}\left(@ \mathrm{~V}_{\mathrm{CCB}}=2.7 \mathrm{~V}\right)$

$$
\pm 24 \mathrm{~mA}\left(@ \mathrm{~V}_{\mathrm{CCB}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V}\right)
$$

- Ordering Information

Part Name	Package Type	Package Code	Package Abbreviation	Taping Abbreviation (Quantity)
HD74LVC4245ATEL	TSSOP-24 pin	TTP-24DBV	T	EL (1,000 pcs/reel)

Function Table

Inputs

$\overline{\mathrm{OE}}$	DIR	Operation
L	L	B data to A bus
L	H	A data to B bus
H	X	Z

H : High level
L: Low level
X: Immaterial
Z: High impedance

Pin Arrangement

Absolute Maximum Ratings

(1) For $V_{C C A}$

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	$V_{\text {CCA }}$	-0.5 to 6.0	V	
Input voltage**	V_{1}	-0.5 to 6.0	V	DIR, $\overline{\mathrm{OE}}$
Input / output voltage	V_{10}	-0.5 to $\mathrm{V}_{\text {CCA }}+0.5$	V	A port output "H" or "L"
		-0.5 to 6.0		A port output "Z" or $\mathrm{V}_{\text {CCA }}$: OFF
Input diode current	I_{IK}	-50	mA	$V_{1}<0$
Output diode current	lok	-50	mA	$\mathrm{V}_{\mathrm{O}}<0$
		50		$\mathrm{V}_{0}>\mathrm{V}_{\text {CCA }}+0.5$
Output current	Io	± 50	mA	
$\mathrm{V}_{\text {CCA }}$, GND current	$\mathrm{I}_{\text {CCA }}$ or IGND	100	mA	
Maximum power dissipation at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ (in still air) ${ }^{* 2}$	P_{T}	862	mW	TSSOP
Storage temperature	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$	

Notes: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

1. The input and output voltage ratings may be exceeded even if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation was calculated using a junction temperature of $150^{\circ} \mathrm{C}$.
(2) For $V_{C C B}$

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	$\mathrm{V}_{\text {CCB }}$	-0.5 to 4.6	V	
Input / output voltage**	$\mathrm{V}_{1 / \mathrm{O}}$	-0.5 to $\mathrm{V}_{\text {CCB }}+0.5$	V	B port output "H" or "L"
		-0.5 to 4.6		B port output "Z" or V ${ }_{\text {CCB }}$: OFF
Input diode current	$\mathrm{I}_{\text {K }}$	-50	mA	$\mathrm{V}_{1}<0$
Output diode current	lok	-50	mA	$\mathrm{V}_{\mathrm{O}}<0$
		50		$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\text {CCB }}+0.5$
Output current	Io	± 50	mA	
$\mathrm{V}_{\text {CCB }}$,GND current	$\mathrm{I}_{\text {CCB }}$ or $\mathrm{I}_{\text {GND }}$	100	mA	
Maximum power dissipation at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ (in still air) ${ }^{*}$	P_{T}	862	mW	TSSOP
Storage temperature	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$	

Notes: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

1. The input and output voltage ratings may be exceeded even if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation was calculated using a junction temperature of $150^{\circ} \mathrm{C}$.

Recommended Operating Conditions

(1) For $V_{C C A}$

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	$\mathrm{V}_{\text {CCA }}$	4.5 to 5.5	V	
Input / output voltage	V_{1}	0 to 5.5	V	DIR, $\overline{\text { OE }}$
	$\mathrm{V}_{1 / \mathrm{O}}$	0 to $\mathrm{V}_{\text {cca }}$		A port output "H" or "L"
		0 to 5.5		A port output "Z" or V ${ }_{\text {CCA }}$: OFF
Output current	$\underline{\mathrm{l}}$	-24	mA	
	loL	24		
Input transition rise or fall time	$\Delta t / \Delta v$	10	ns / V	
Operating temperature	Ta	-40 to 85	${ }^{\circ} \mathrm{C}$	

Note: Unused or floating inputs must be held high or low.
(2) For $V_{C C B}$

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	$\mathrm{V}_{\text {CCB }}$	2.7 to 3.6	V	
Input / output voltage	$\mathrm{V}_{\text {I/O }}$	0 to $\mathrm{V}_{\text {ccb }}$	V	B port output "H" or "L"
		0 to 3.6		B port output "Z" or $\mathrm{V}_{\text {CcB }}$: OFF
Output current	IOH	-12	mA	$\mathrm{V}_{\text {CCB }}=2.7 \mathrm{~V}$
		-24		$\mathrm{V}_{\text {CCB }}=3.0$ to 3.6 V
	loL	12		$\mathrm{V}_{\text {CCB }}=2.7 \mathrm{~V}$
		24		$\mathrm{V}_{\text {CCB }}=3.0$ to 3.6 V
Input transition rise or fall time	$\Delta t / \Delta v$	10	ns / V	
Operating temperature	Ta	-40 to 85	${ }^{\circ} \mathrm{C}$	

Note: Unused or floating inputs must be held high or low.

Block Diagram

Electrical Characteristics

$\left(\mathrm{Ta}=-40\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

Item	Symbol	$\mathrm{V}_{\text {cca }}(\mathrm{V})$	$\mathrm{V}_{\text {ccB }}(\mathrm{V})$	Min	Max	Unit	Test Conditions
Input voltage	V_{IH}	4.5 to 5.5	2.7 to 3.6	2	-	V	
	$\mathrm{V}_{\text {IL }}$	4.5 to 5.5	2.7 to 3.6	-	0.8		
Output voltage	$\mathrm{V}_{\text {OHA }}$	4.5 to 5.5	2.7 to 3.6	$\mathrm{V}_{\text {CCA }}-0.2$	-	V	$\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
		4.5	2.7 to 3.6	3.7	-		$\mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA}$
		5.5	2.7 to 3.6	4.7	-		
	$\overline{\mathrm{V}_{\text {OHB }}}$	4.5 to 5.5	2.7 to 3.6	$\mathrm{V}_{\text {CCB }}-0.2$	-	V	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \end{aligned}$
		4.5 to 5.5	2.7	2.2	-		
		4.5 to 5.5	3.0	2.4	-		
		4.5 to 5.5	3.0	2	-		$\mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA}$
	$\mathrm{V}_{\text {OLA }}$	4.5 to 5.5	2.7 to 3.6	-	0.2	V	$\frac{\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}}{\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}}$
		4.5	2.7 to 3.6	-	0.55		
		5.5	2.7 to 3.6	-	0.55		
	$\mathrm{V}_{\text {OLB }}$	4.5 to 5.5	2.7 to 3.6	-	0.2	V	$\begin{aligned} & \mathrm{l} \mathrm{OL}=100 \mu \mathrm{~A} \\ & \hline \mathrm{IOL}=12 \mathrm{~mA} \\ & \hline \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
		4.5 to 5.5	2.7	-	0.4		
		4.5 to 5.5	3.0	-	0.55		
Input current	$\mathrm{I}_{\text {IN }}$	5.5	2.7 to 3.6	-	± 1	$\mu \mathrm{A}$	Control input
Off state output current	$\mathrm{I}_{\text {OZA }}$	5.5	2.7 to 3.6	-	± 5	$\mu \mathrm{A}$	$\begin{aligned} & \text { A port, } \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CCA}} \text { or } \mathrm{GND} \\ & \hline \text { B port, } \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CCB}} \text { or } \mathrm{GNDD} \end{aligned}$
	$\mathrm{I}_{\text {OZB }}$	4.5 to 5.5	3.6	-	± 5		
Output leak current	lofF	0	0	-	20	$\mu \mathrm{A}$	$\begin{aligned} & \text { A port, } \mathrm{V}_{1 / O}=5.5 \mathrm{~V} \\ & \text { B port, } \mathrm{V}_{1 / O}=3.6 \mathrm{~V} \end{aligned}$
Quiescent supply current	$\mathrm{I}_{\text {CCA }}$	5.5	2.7 to 3.6	-	80	$\mu \mathrm{A}$	```B to A, control input = V CCA or GND Bn= VCcB or GND, lo (A port) = 0```
	$\overline{\mathrm{I} C C B}$	4.5 to 5.5	3.6	-	50	$\mu \mathrm{A}$	```A to B, control input = V VCA or GND An = V CCA or GND, IO (B port) = 0```
Increase in Icc per input *1	$\Delta l_{\text {CCA }}$	5.5	2.7 to 3.6	-	1.5	mA	A port or Control input, One input at 3.4 V , Other input at $\mathrm{V}_{\mathrm{CCA}}$ at GND
	$\bar{\Delta} \mathrm{ICCB}$	4.5 to 5.5	2.7 to 3.6	-	0.5	mA	B port, One input at $\mathrm{V}_{\mathrm{CCB}}-0.6 \mathrm{~V}$, Other input at $\mathrm{V}_{\mathrm{CCB}}$ at GND

Notes: For condition shown as Min or Max, use the appropriate values under recommended operating conditions.

1. This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

Capacitance

$$
\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)
$$

Item	Symbol	$\mathbf{V}_{\text {CCA }}(\mathbf{V})$	$\mathbf{V}_{\text {CCB }}(\mathbf{V})$	Min	Typ	Max	Unit	Test Conditions
Control Input capacitance	$\mathrm{C}_{I N}$	5	3.3	-	5	-	pF	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CCA}}$ or GND
Input/output capacitance	$\mathrm{C}_{/ / \mathrm{O}}$	5	3.3	-	11	-	pF	A port, $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CCA}}$ or GND,
								B port, $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CCB}}$ or GND

Switching Characteristics

Item	Symbol	Min	Typ	Max	$\left(\mathrm{Ta}=-40\right.$ to $\left.85^{\circ} \mathrm{C}\right), \mathrm{V}_{\mathrm{CCA}}=5.0 \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=2.7 \mathrm{~V}$ to 3.6 V			
					Unit	Test conditions	From(Input)	To(Output)
Propagation delay time	tpLH	1	-	6.7	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	A	B
	$\mathrm{t}_{\text {PHL }}$	1	-	6.3				
	$\mathrm{t}_{\text {PLH }}$	1	-	5			B	A
	$\mathrm{t}_{\text {PHL }}$	1	-	6.1				
Output enable time	tz	1	-	8.1	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	$\overline{O E}$	A
	tzL	1	-	9				
	tzH	1	-	9.8			$\overline{\overline{\mathrm{OE}}}$	B
	t_{zL}	1	-	8.8				
Output disable time	$\mathrm{thz}^{\text {l }}$	1	-	5.8	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	$\overline{\mathrm{OE}}$	A
	tLz	1	-	7				
	t_{Hz}	1	-	7.8			$\overline{\overline{O E}}$	B
	tLz	1	-	7.7				

Operating Characteristics

Item	Symbol	$\mathbf{V}_{\text {CCA }}(\mathbf{V})$	$\mathbf{V C C B ~}^{\text {(V) }}$	Min	Typ	Max	Unit	Test Conditions
Power dissipation capacitance	$\mathrm{C}_{\text {PD }}$	5.0	3.0	-	39.5	-	pF	$\mathrm{f}=10 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=0$

Power-up considerations

Level-translation devices offer an opportunity for successful mixed-voltage signal design.
A proper power-up sequence always should be followed to avoid excessive supply current, bus contention, oscillations, or other anomalies caused by improperly biased device pins.

Take these precautions to guard against such power-up problems.

1. Connect ground before any supply voltage is applied.
2. Next, power up the control side of the device.
(Power up of $\mathrm{V}_{\mathrm{CCA}}$ is first. Next power up is $\mathrm{V}_{\mathrm{CCB}}$.)
3. $\mathrm{Tie} \overline{\mathrm{OE}}$ to $\mathrm{V}_{\mathrm{CCA}}$ with a pullup resistor so that it ramps with $\mathrm{V}_{\mathrm{CCA}}$.
4. Depending on the direction of the data path, DIR can be high or low.

If DIR high is needed (A data to B bus), ramp it with $\mathrm{V}_{\text {CCA }}$. Overwise, keep DIR low.

Test Circuit

Note: 1. CL includes probe and jig capacitance.

Waveforms - 1

Symbol	$\mathrm{V}_{\mathrm{CCA}}=5 \pm 0.5 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CCB}}=2.7$ to 3.6 V	
	A to B	B to A
V_{IH}	3.0 V	2.7 V
Vref1	1.5 V	1.5 V
Vref2	1.5 V	$1 / 2 \mathrm{~V}_{\mathrm{CCA}}$

Waveforms - 2

Notes: 1. All input pulses are supplied by generators having the following characteristics : $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{tr}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
2. Waveform - A is for an output with internal conditions such that the output is low except when disabled by the output control.
3. Waveform - B is for an output with internal conditions such that the output is high except when disabled by the output control.
4. The output are measured one at a time with one transition per measurement.

Package Dimensions

